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Abstract-In this paper, a new methodology for implementing the clamped and simply supported
boundary conditions is presented for the free vibration analysis of beams and plates using the
generalized differential quadrature (GDQ) method. The proposed approach directly substitutes the
boundary conditions into the governing equations and is referred to as SBCGE approach. The
SBCGE approach is presented to overcome the drawbacks of previous approaches in treating the
boundary conditions, A comparison of the SBCGE approach with the method of modifying
weighting coefficient matrices (MWCM) is made by their application to the vibration analysis of
beams and plates with combinations of simply supported and clamped boundary conditions. Some
details of the GDQ method are also described in the paper. © 1997 Elsevier Science Ltd. All rights
reserved.

I. INTRODUCTION

Most numerical simulations of engineering problems can be currently carried out by
conventional low order finite differences and finite elements using a large number of
grid points. However, in some practical applications, the numerical solutions of partial
differential equations are required at only a few specified points in the physical domain.
For acceptable accuracy, the conventional low order techniques still require the use of a
large number of grid points to obtain accurate solutions at these specified points. In seeking
a more efficient method using just a few grid points to obtain accurate numerical results,
the technique of differential quadrature (DQ) was proposed by Bellman et al. (1972). The
DQ method follows the concept ofclassical integral quadrature. DQ approximates a spatial
derivative of a function with respect to a coordinate at a discrete point as a weighted linear
sum of all the functional values in the whole domain of that coordinate direction. The key
to DQ is to determine the weighting coefficients for any order derivative discretization.
Bellman et al. (1972) suggested two methods to determine the weighting coefficients of the
first order derivative. The first method solves an algebraic equation system. The second
uses a simple algebraic formulation, but with the coordinates of grid points chosen as the
roots of the shifted Legendre polynomial. Most previous applications ofDQ in engineering
(see, e.g., Bellman et al. (1972), Mingle (1977), Civan and Sliepcevich (1983), (1984), lang
et al. (1989» use Bellman's first method to obtain the weighting coefficients because it lets
the coordinates of grid points be chosen arbitrarily. Unfortunately, when the order of the
algebraic equation system is large, its matrix is ill-conditioned. Thus, it is very difficult to
obtain the weighting coefficients for a large number of grid points using this method. To
overcome the drawbacks of above methods, Quan and Chang (1989), Wen and Yu (l993a)
use Lagrange interpolation polynomials as test functions, and then obtained explicit for­
mulations to determine the weighting coefficients for the first and second order derivatives
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discretization. More generally, Shu and Richards (1990), and Shu (1991) present the
generalized differential quadrature (GOO), in which all the current methods for deter­
mination of weighting coefficients are generalized under the analysis of a high order poly­
nomial approximation and the analysis of a linear vector space. In GDQ, the weighting
coefficients of the first order derivative are determined by a simple algebraic formulation
without any restriction on choice of grid points, and the weighting coefficients of the
second and higher order derivatives are determined by a recurrence relationship. The major
advantage of GDQ over DQ is its ease of the computation of the weighting coefficients
without any restriction on the choice ofgrid points. The GDQ method has been successfully
applied to some fluid flow problems (see, e.g., Shu (1991), Shu and Richards (1990),
(1992a), (1992b» and structural problems (see, e.g. Du et al. (1994), (1995».

The pioneer work for the application ofthe DQ method to the general area ofstructural
mechanics was carried out by Bert et al. (1988), (1993), (1994), Wang and Bert (1993), and
Wanget al. (1993), (1994). The recent work ofDu et al. (1994), (1995), Laura and Gutierrez
(1993), and Wen and Yu (1993b) also showed some applications in this area. Like some
other numerical methods, the GDQ method discretizes the spatial derivatives and, therefore,
reduces the partial differential equations into a set of algebraic equations. To solve these
equations, the boundary conditions have to be implemented appropriately. For the case
where there is only one boundary condition at each boundary, the implementation is very
simple and can be done in a straightforward way. One just needs to replace the discretized
governing equations by the boundary conditions at all the boundary points. However, in
some cases, there is more than one boundary condition at each boundary, which could
result in difficulties in the numerical implementation of the boundary conditions. One
example is the solution of the incompressible Navier-Stokes equations. Although the
governing equations are second order partial differential equations, there are two boundary
conditions for the stream function at each solid boundary, one a Dirichlet type, and other
a Neumann type. To implement these two boundary conditions accurately, Shu (1991)
proposed an approach which converts the two boundary conditions into two-layer numeri­
cal boundary conditions. Another example is the flexural vibration analysis of a thin beam
or a plate which will be addressed in the present and companion papers.

The governing equation for bending of a thin beam or a plate is a fourth order
differential equation with two boundary conditions at each boundary. Currently, there are
various approaches to implement the boundary conditions. One is the so-called b-technique
proposed by Bert et al. (1988) and lang et al. (1989), in which two grid points, separated
from each other by a small distance 15, are placed near each boundary edge. Then, the two
boundary conditions at each boundary are applied at the boundary point itself and its
adjacent b-point. As a reSUlt, one boundary condition is exactly satisfied at the boundary
while the other (Neumann type) is approximately satisfied at the b-point. There are two
major drawbacks to the b-technique. One drawback arises from the implementation of one
boundary condition at the b-point. Since it is an approximation to the true boundary
condition which should be implemented at the boundary, one can expect that the numerical
result is dependent on the choice of the b-value. To obtain an accurate numerical solution,
the 15 should be chosen to be very small (possibly not greater than 0.0001/, where I is the
length of the beam or the plate). The small value of 15 would cause the second drawback of
this technique. When one mesh size (b) is much smaller than the others, the GDQ weighting
coefficient matrices become highly ill-conditioned, which then causes the solution to oscil­
late. As a result, the numerical solution is less accurate. This has been pointed out by Wang
and Bert (1993). The recent work ofWen and Yu (1993b) showed that when two boundary
conditions are implemented at one boundary point, then the numerical results are greatly
improved. In order to overcome the drawbacks of the b-technique, Wang and Bert (1993)
proposed another approach. In this approach, the derivative boundary conditions are built
into the weighting coefficient matrices in the DQ discretization. This approach has been
successfully applied to solve some beam and plate problems with very good accuracy.
However, as indicated by Wang and Bert (1993), there are some limitations to the appli­
cation of this approach. One limitation is in the implementation of the clamped-{;lamped
(C-e) type boundary conditions. As will be shown in this paper, the implementation of the
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c-e type boundary conditions by this approach leads to some wrong numerical results.
Also, for free boundaries of plates, this approach cannot be applied.

In this paper, the approach proposed by Shu (1991) for solving the incompressible
Navier-Stokes equations is applied to implement the two boundary conditions at each
boundary in the GDQ vibration analysis of beams and plates. As will be seen, this approach
removes the drawbacks of the c5-technique. Actually, the major difference between the
present approach and the c5-technique is that the two boundary conditions are exactly
satisfied in the present approach while only one boundary condition is exactly satisfied
in the c5-technique. The implementation of conventional clamped and simply supported
boundary conditions in the GDQ vibration analysis of beams and plates is described in the
present paper. The implementation of more general boundary conditions including free
edges in the GDQ vibration analysis of plates will be addressed in the companion paper
(Shu and Du, 1997).

2. GENERALIZED DIFFERENTIAL QUADRATURE

Differential quadrature
Following the concept of classical integral quadrature, Bellman et al. (1972) proposed

the following approximation

N

fAx;, t) = I cU) 'f(Xj, t), for i = 1,2, ... , N,
j~ I

(1)

where fix;, t) indicates the first order derivative off(x, t) with respect to x at x;. Obviously,
the key procedure in this technique is to determine the weighting coefficients ell). Bellman
et al. suggested two ways to carry this out. The first way is to let eqn (1) be exact for test
functions gk(X) = xk, k = 0,1, ... , N -1, which leads to a set of linear algebraic equations

N

I elF'xJ=k':0;-I, fori=I,2,oo.,N; k=O,I,oo.,N-l.
j~l

(2)

This equation system has a unique solution because its matrix is of Vandermonde form.
Unfortunately, when N is large, the matrix is ill-conditioned and its inversion is difficult.
The second way is similar to the first one with an exception that the different test functions

9k(X)=( )'L(l)()'X-Xk N Xk
k = 1,2, .. . ,N, (3)

are chosen, where LN(x) is the Nth order Legendre polynomial and L~)(x) the first order
derivative of LN(x). Using the above test functions, Bellman et al. (1972) obtained a simple
algebraic formulation for calculating elF, but with a condition that the coordinates of grid
points should be chosen as the roots of an Nth order Legendre polynomial. Most previous
applications of DQ in engineering (see, e.g., Bellman et al. (1972), Mingle (1977), Civan
and Sliepcevich (1983), (1984), Jang et al. (1989» use Bellman's first method to obtain the
weighting coefficients because the grid points can be chosen arbitrarily. However, because
of the drawback described above, the number of grid points used is less than or equal to
13. To overcome the drawbacks of DQ, the generalized differential quadrature (GDQ)
approach was developed by Shu (1991) for determination of weighting coefficients.

High order polynomial approximation and linear vector space
The GDQ is based on the analysis of a high order polynomial approximation. It is

well known that a smooth function in a domain can be approximated by a high order
polynomial accurately in accordance with the Weierstrass polynomial approximation
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theorem. Following this theorem, it is proposed that the solution of a one-dimensional
partial differential equation can be approximated by a (N-1)th order polynomial.

N-l
f(x) = L ak";0.

k~O

(4)

It is easy to show that the polynomial of degree less than or equal to N - 1 constitutes an
N-dimensional linear vector space VN. From the concept of linear independence, the bases
of a linear vector space can be considered as a linearly independent subset which spans the
entire space. Here, if rix), k = 1,2, ... ,N, are the base polynomials in VN, f(x) can then
be expressed by

N

f(x) = L dk" rk(x).
k=l

(5)

Clearly, if all the base polynomials satisfy a linear constrained relationship such as eqn (1),
so does f(x). In the linear vector space, there may exist several sets of base polynomials.
Each set of base polynomials can be expressed uniquely by another set of base polynomials.
It was found that, if the base polynomial rk(x) is chosen to be ;0-1, the same equation
system as (2), given by Bellman's first method, can be obtained, and if the base polynomial
rk(x) is taken in the same form as eqn (3), the same formulation, given by Bellman's second
method, can be achieved.

Weighting coefficients offirst order derivative
For generality, GDQ chooses the base polynomial rk(x) to be the Lagrange interpolated

polynomial

(6)

where

XI' Xz, . .. , XN are the coordinates of the grid points, and may be chosen arbitrarily.
For simplicity, we set

M(x) = N(x, Xk) "(x-xk),k = 1,2, ... , N

with N(xjo x) = M(l)(x;) "()ij' where ()ij is the Kronecker operator. Thus, we have

(7)

M(m)(x) = N(m)(X,Xk) "(x-xk)+m" N(m-l)(x, Xk)

for m = 1,2, ... , N - 1; k = 1,2, ... , N, (8)

where u<m)(x), Nfm)(x, Xk) indicate the mth order derivative of M(x) and N(x, Xk). Sub­
stituting eqn (6) into eqn (1) and using eqn (8), we obtain

ci) = M(1)(x;) ,j # i
(x;-xj ) " M(1)(x)

C\l) = M(Z)(x;) i =J'.
1/ 2M(I)(X;) ,

(9a)

(9b)
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Equation (9) is a simple formulation for computing dP without any restriction on choice
of grid point Xi' Actually, if Xi is given, it is easy to compute M(l)(x;), thus, dP for i =1= j.
The calculation of d/) is based on the computation of the second order derivative Mi2)(X;)
which is not easily obtained. As will be shown in the following, this difficulty can be removed
by the property of the linear vector space. According to the theory of a linear vector space,
one set of base polynomials can be expressed uniquely by another set of base polynomials.
Thus, if one set of base polynomials satisfies a linear constrained relationship, say eqn (I),
so does another set of base polynomials. Thus, dP satisfies the following equation which is
obtained by the base polynomial x!' when k = 0

M

L C~I) = O.
j=1

From eqn (10), 41
) can be easily determined from el)) (i =1= j).

(10)

Weighting coefficients ofsecond and higher order derivatives
For the discretization of the second and higher order derivatives, the following linear

constrained relationships are applied

N

f~m)(x;, t) = L dj) of(xj , t)
j= 1

(II)

N

f~m-I)(x;, t) = L elr1).f(xj , t) for i = 1,2, ... , N; m = 2,3, ... , N -1. (12)
j= I

Substituting eqn (6) into eqns (11), (12), and using eqns (8) and (9), a recurrence for­
mulation is obtained as follows

(l3a)

(l3b)

for i,j = 1,2, ... , N; m = 2,3, ... , N - 1,

where cU) are the weighting coefficients of the first order derivative described above. Again,
in terms of the analysis of the N-dimensional linear vector space, the equation system for
dj) derived from the Lagrange interpolated polynomials should be equivalent to that
derived from the base polynomials x!', k = 0, 1, ... , N - I. Thus, dj) should satisfy the
following equation obtained from the base polynomial x!' when k = 0

N

L dj) = O.
j= 1

From this formulation, dr) can be determined from dj) (i =1= j).

(14)

Extension to the multi-dimensional case
For the two-dimensional approximation of a functionf(x, y) in a rectangular domain,

it is supposed that the value of f(x, b), where b is a constant, can be approximated by a
(N - 1)th order polynomial PN(X) which constitutes an N-dimensional linear vector space
VN with N base polynomials r;(x), i = 1,2, ... , N, and the value of f(a,y), where a is a
constant, can be approximated by a (M -I)th order polynomial PM(y) which constitutes a
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M-dimensionallinear vector space VM with M base polynomials siy),j = 1,2, ... , M. The
value offunctionf(x,y) can be approximated by the polynomial QNXM(X,y) with the form

N M

QNxM(X,y) = L L aij·xi
-

I .yj - I

i=1 j~l

(15)

where a;j is a coefficient. It is obvious that QNxM(X,y) constitutes an Nx M dimensional
linear polynomial vector space VNxM' In the following, itis shown that <l>ij(x,y) = r;(x)· siY)
constitutes the base polynomials in the vector space VNxM' Since r;(x), siY) are the base
polynomials of VN and VM, they must be linearly independent, that is

N

L h;' ri(x) = 0 only if hi = 0, i = 1,2, ... , N.
;=1

M

L dj ' siY) = 0 only if dj = O,j = 1,2, ... , M.
j=]

It is observed that if

then from eqn (16), the following equation can be obtained

M

L eij·siY) = O.
j~l

(16)

(17)

(18)

Finally, from eqn (17), we obtain eij = O. Thus, <l>ij(x, y) constitutes the base polynomials
in VNxM'

Now, it is assumed that the following constrained relations are satisfied for function
f(x, Y, t) and its first order spatial derivatives

N

fAx;,Yj, t) = L c~) ·f(XbYj, t)
k=1

M

J;,(x;'Yj' t) = L c)k) ·f(X;,Yb t)
k~1

fori= 1,2"",N; j= 1,2, ... ,M,

(19)

(20)

where c~), c)k) are the weighting coefficients related tofAx i, Yj' t) andJ;,(xil Yj, t), respectively.
If all the base polynomials <l>ij(x,y) satisfyeqns (19), (20), then so does any polynomial in
VNxM' Substituting <l>ij(x,y) into eqns (19), (20) yields

N

L c~)· rj(xd = rJ!)(x;}
k=l

M

L clp· Sj(Yk) = sJ!)(y;}
k=1

(21)

(22)

where rJ!)(x;) represents the first order derivative of rix) at Xi and sJ!)(y;) represents the
first order derivative of siY) at Yi' From eqns (21), (22), it is obvious that riP or C)k) is only
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related to r;(x) or siy). Hence, the formulation of the one dimensional case can be directly
extended to the two dimensional case.

3. IMPLEMENTATION OF BOUNDARY CONDITIONS

In this section, the GDQ method is applied to analyze the free vibrations of beams and
rectangular plates. A new methodology for implementing various conventional boundary
conditions is presented, which directly substitutes the boundary conditions into the gov­
erning equations (SBCGE) and then simplifies the resultant eigenvalue equation system.

Vibration ofbeams
The non-dimensional governing equation for the free vibration of a Bernoulli-Euler

beam of varying cross-section may be written as

(23)

where

EI is the beam's flexural rigidity, pA is the mass per unit length, L is the length of the beam,
ill is the dimensional frequency. For a beam of varying cross-section, EI and A are functions
of the coordinate x. Equation (23) is a 4th order ordinary differential equation. For a well­
posed problem, it requires four boundary conditions. These can be given by specifying two
boundary conditions at the end X = 0, and another two boundary conditions at the end
X = 1. In the present work, the following two types of boundary conditions are considered:
Simply supported end (SS)

Clamped end (C)

OZW
W=O and --=0

oXz

oW
W = 0 and oX = O.

(24a)

(24b)

For the numerical computation, the continuous solution is approximated by the function
values at discrete points. Now, we assume that the computational domain 0 ~ X ~ 1 is
divided by (N-1) intervals with coordinates of grid points as XI' Xz, . .. , XN • With the
coordinates of grid points, the GDQ weighting coefficients can be computed through eqns
(9a), (10), (13a) and (14). Then, applying the GDQ method to discretize the spatial
derivatives of eqn (23) yields

N N N

s(Z)(X;)' L cifl • Wk+2 's(l)(Xj)' L ciP' Wk+s(Xj )' L cit>. Wk = QZ. Wj (25)
k= I k= I k= I

where Wi' i = 1,2, ... , N, is the functional value at the grid point Xj' P)(X;), s(l)(Xi) are the
second and first order derivatives of seX) at Xi. Similarly, the derivatives in the boundary
conditions can be discretized by the GDQ method. As a result, the numerical boundary
conditions can be written as
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WI =0 (26a)

N
L c\~2)· Wk = 0 (26b)

k=1

WN=O (26c)

N
L c~y· Wk = 0 (26d)

k=1

where nO, nl may be taken as either 1 or 2. By choosing nO, nl, eqn (26) can give the
following four sets of boundary conditions,

nO = 1, n1 = 1~lamped-elamped
nO = 1, nl = 2~lamped-simply supported
nO = 2, n1 = I-simply supported-elamped
nO = 2, n1 = 2-simply supported-simply supported.

Equations (26a) and (26c) can be easily substituted into equation system (25). This is not
the case for eqns (26b) and (26d). However, one can couple these two eqns (26b), (26d)
together to give two solutions, W2 and WN _ I, as

where

1 N-2
W2 = -_. L: AXKl· Wk

AXN k=3

AXKl = c(nO) • c(nl) _ c(nO) • c(nl)1.k N,N-I I.N-I N,k

AXKN = c(nO). c(nl) _c(nO). C(nl)1.2 N,k I,k N.2

AXN = C(n I) • C(nO) _ C(nO) . C(n I)N,2 I,N-I 1,2 N.N-I·

(27a)

(27b)

According to eqn (27), W2and WN_ 1 are expressed in terms of W3, W4, ••• , WN- 2, and can
be easily substituted into the equation system (25). It is noted that eqn (26) provides four
boundary equations. In total, we have N unknowns W], ... , WN • So, to close the system,
the discretized governing eqn (25) has to be applied at (N -4) grid points, This can be done
by applying eqn (25) at grid points X3, X4, ••• , XN- 2. Substituting eqns (26a), (26c), (27)
into eqn (25) gives

N-2 N-2 N-2
S<2)(Xi)' L C1 • Wk+ 2· S<1)(Xi)· L C2• Wk+s(X;)· L C3• Wk = n2

• Wi
k=3 k=3 k=3

where

for i = 3,4, ... ,N - 2.

C(2). AXKl +C(2) •AXKNC - (2) •• 2 I,N-I
1 - Ci.k - AXN

C(3). AXKl +c(3) •AXKNC - (3) 1.2 .,N-I
2 - Ci.k - AXN

_ (4) c~i>· AXKl +Cl.~-l .AXKN
C3 - C.,k - AXN

(28)
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It is noted that equation system (28) has (N - 4) equations and (N - 4) unknowns, which
can be written in an eigenvalue matrix form

(29)

where

It is noted that the t5-technique discussed earlier also uses four boundary condition equations
similar to eqn (26). Equations (26a) and (26c) are the same in the t5-technique. However,
eqns (26b) and (26d) are replaced in the t5-technique by

N

L c~~2)' Wk = 0
k=l

N

"c(nl) • W - 0L.. N-l.k k - .
k~l

X2 and XN _ 1 are chosen as t5 and 1-t5 in the t5-technique. Obviously, the t5-technique does
not implement the derivative boundary conditions at the correct positions.

Vibration of thin rectangular plates
The non-dimensional differential equation for a thin uniform thickness, rectangular

plate may be written as

(30)

where W is the dimensionless mode function; Q is the dimensionless frequency; X = x/a,
Y = ylb are dimensionless coordinates, a and b are the lengths of the plate edges; .Ie = alb
is the aspect ratio. Further, Q = walJPii5, where w is the dimensional circular frequency,
D = Eh3/[l2(l-v2

)] is the flexural rigidity, E, v, p and h are Young's modulus, Poisson's
ratio, density of the plate material, and the plate thickness, respectively. Equation (30) is a
4th order partial differential equation with respect to X and Y. Thus, it requires two
boundary conditions at each edge. The following two types of boundary conditions are
considered.

Simply supported edge (SS)

(3Ia)

at X = 0 or X = I, and

(3Ib)

at Y = 0 or Y = 1.

Clamped edge (C)

at X = 0 or X = I, and

oW
W=O -=0, ax (32a)
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oW
W=O -=0, oY (32b)

at Y = 0 or Y = I.
By applying the GDQ method, eqn (30) can be discretized as

N N M M

'" C(4)·W .+2A.2 . '" '" cF) ·C(2)·W +A.4 • '" C\4l.W =Q2·WL.... I.k k" L. L. I.k I J,k2 k1,k2 L. J,k I,k I,J
k=l kl=lk2=1 k~l

(33)

where N, M are the number of grid points in the X and Y directions, respectively, and c~'2,

c}~) are the weighting coefficients in the X and Y directions, Similarly, using the GDQ
approach, the boundary conditions (31), (32) can be generalized as

W1J=0, WNJ=O, Wi,l =0, Wi,M=O fori= 1,2" .. ,N;j= 1,2,.",M,

(34a)

N
L c\n2) • Wk . = 0 for j = 2,3" ."M-I, (34b), J

k=l

NL c(nl). W - 0 forj= 2,3,,,.,M-I, (34c)N,k kJ -
k=l

M
L c(mO). W = 0 for i = 2,3, ... , N -I, (34d)I,k I,k
k~l

ML c(ml). W = 0 for i = 2,3, ... , N - I, (34e)M.k I.k
k~J

where nO, nl, mO, ml are taken as either I or 2: I is for the clamped edge condition and 2
is for the simply supported edge condition. nO, nl, mO, ml are for the edges of X = 0, X = I,
Y = 0, Y = I, respectively. It is noted that eqn (34a) corresponds to the Dirichlet boundary
conditions at the four edges of the plate, and eqns (34b), (34c), (34d) and (34e) result from
the derivative boundary conditions. Obviously, eqn (34a) can be easily substituted into the
equation system (33). However, eqns (34b), (34c), (34d) and (34e) cannot be directly put
into the equation system (33). This difficulty can be eliminated by the following approach.
Using the same fashion as for beams, eqns (34b), (34c) can be coupled to give two solutions,
W 2J' WN- IJ, which are located at the grid points shown by the symbol 0 in Fig. I, as

M

M·l

M·2
Boundary

3
2

J=1
1=1 2 3 N·2 N·l N

Fig. 1. Illustration of interior and adjacent points for a rectangular plate.
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1 N-2
W2j = A N' L AXK1' Wkj

X k=3

1 N-2
WN_lj = AXN' k~3 AXKN' Wkj forj= 3,4, ... ,M-2,

AXN = c(n I) • c(nO) _ c(nO) •c(n I)N,2 I,N-I 1,2 N,N-l

AXKl = C(nO)'C(nl) _C(nO) 'C(nl)
I,k N,N-l I,N-l N,k

AXKN = C(nO) •C(nl) _ C(nO) • C(nl)1,2 N,k I,k N,2 .
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(35a)

(35b)

Similarly, eqns (34d), (34e) can be coupled to give two solutions, Wi2 , Wi,M-1o which are
located at the grid points shown by the symbol 0 in Fig. I, as

1 M-2
W 2 =-_. " AYKI'Wk" AYM k'='3 I,

(36a)

1 M-2
Wi,M-l = AYM' k~3 AYKM'Wi,k fori=3,4, ... ,N-2, (36b)

where

AYM = If,ml). c<mO) _e(mO). e(ml)M,2 I,M-I 1,2 M,M-I

A YKI = elmO) • e(ml) _ c<mO) • e(ml)
I,k M,M-I I.M-I M,k

A YKM = elmO) • c<ml) _ If,mO) •e(ml)1,2 M,k I,k M,2 .

For the points near the four comers shown by the symbol. in Fig. 1, the four eqns (34b),
(34c), (34d), (34e) have to be coupled to provide the following four solutions

I I N-2 M-2
W2,2 = AXN'AYM' L L AXK1'AYKI' Wkl ,k2 (37a)

kl=3k2=3

I I N-2 M-2
WN- I,2 = AXN'AYM' L L AXKN'AYKI'Wkl ,k2 (37b)

kl=3 k2~3

I I N-2 M-2
W2,M-1 = AXN'AYM' L L AXK1' AYKM' WkI ,k2 (37c)

kl=3k2~3

I I N-2 M-2
WN-I,M-I = AXN'-A • L L AXKN'A YKM' Wkl ,k2' (37d)

YM kl=3 k2=3

For eqn (37), the index k in the AXKl and AXKN expressions is replaced by kl, and the
index k in the A YKI and AYKM expressions is replaced by k2. With eqns (34a), (35), (36)
and (37), all the boundary conditions can be directly substituted into the governing equation
system (33). As a result, the final eigenvalue equation system becomes

N-2 N-2 M-2 M-2
L .C1 • Wkj +2/F· L L C2' Wk1 ,k2 +A4

• L .C3' Wi,k = Q2. Wi,) (38)
k=3 kl=3k2=3 k~3

where
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C\4) 0 AXKl + C~4) 0 AXKNC _ (4) 1.2 I,N-l
1 - Cj,k - AXN '

c _ (2) 0 ,.(2) (AXKl 0 d,~ +AXKN 0 d5L I) 0 ,.(2)
2 - Cj,kl Cj ,k2 - AXN Cj ,k2

_ (AYKIOc)~i+AYKM'0~1t_I) 0 (2)

AYM Ci,kl

(AXKl 0 A YKI 0 C\2) 0 t<2) +AXKN 0 A YKI 0 C\2) _ °c(2»+ 1,2 J,2 I,N I J,2
AXNoAYM

(AXKl 0 A YKM 0 C(2) oC\2) +AXKN 0 A YKM 0 C\2) °c(2) )+ 1,2 J,M-l I,N-l J,M-l
AXNoAYM

C(4) 0 AYKI + t<4) 0 AYKMC = C(4) _ J,2 J,M-l
3 J,k AYM

Since the equation system (38) has (N -4) x (M -4) unknowns, it should be applied at
(N -4) x (M -4) interior points to close the system. This can be done by applying eqn (38)
at the interior points 3 ~ i ~ N - 2, 3 ~ j ~ M - 2 as shown in Fig. 1. Similarly, eqn (38)
can be put in a matrix form

(39)

where

4. RESULTS AND DISCUSSION

As mentioned earlier, the present approach overcomes the drawbacks of the c5-tech­
nique in implementing the derivative conditions. Thus, the c5-technique will not be used to
validate the present approach. The method of modifying the weighting coefficient matrices
(MWCM) proposed by Wang and Bert (1993) is different from the present approach. The
idea of the MWCM is to directly incorporate the zero derivative boundary conditions into
the weighting coefficient matrices. The comparison of the present approach and the MWCM
method will be discussed through their applications to the vibration analysis of beams and
plates with combinations of simply supported and clamped boundary conditions.

In the present study, the coordinates of the grid points for the beam are chosen as

I _ cos ( i-Ion)
N-I

Xj = 2 ,i = 1,2, ... , N. (40)

Numerical computations ofnatural frequencies for a uniform beam s(X) = I are conducted
under three sets of boundary conditions, that is, simply supported-simply supported (SS­
SS), clamped-elamped (C-e), and clamped-simply supported (C-SS) conditions. The
GDQ results using the present approach for implementing the boundary conditions are
compared with the well known exact solutions (cf. Belvins (1984» and the GDQ results
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Table I. Comparison of natural frequencies of a uniform beam (N = 15)

0 1 O2 0 3 ~ 0 5

simply supported-simply supported
Blevins (1984) 9.8696 39.4784 88.8264 157.9137 246.7401

SBCGE 9.8696 39.4784 88.8249 158.0619 248.4716
MWCM 9.8696 39.4784 88.8264 157.9138 246.7409

clamped-damped
Blevins (1984) 22.3733 61.6728 120.9034 199.8594 298.5555

SBCGE 22.3733 61.6728 120.9021 199.9365 299.3886
MWCM 0.012518 22.3733 61.6728 120.8963 199.9665

clamped-simply supported
Blevins (1984) 15.4182 49.9648 104.2477 178.2697 272.0310

SBCGE 15.4182 49.9648 104.2471 178.4642 273.1126
MWCM 15.4182 49.9648 104.2477 178.2671 271.9485

using the MWCM method. Table 1 lists natural frequencies of the first 5 modes for the
above-mentioned three sets of boundary conditions. Included in Table 1 are the SBCGE
results, MWCM results, and the exact solutions (cf. Blevins (1984». The GDQ results are
obtained using 15 grid points. It can be observed from Table I that, for the SS-SS boundary
condition, although the SBCGE and the MWCM results agree very well with the exact
solutions, the MWCM method gives better accuracy than the SBCGE approach. Actually,
the SBCGE method requires 17 grid points to reach the same accuracy as the MWCM
method with the use of IS grid points. This phenomenon can be analyzed as follows. The
error of numerical results to the true solution of a partial differential equation is due to
the truncated error arising from the numerical discretization of derivatives in the partial
differential equation and the boundary conditions. In the MWCM method, the derivative
conditions are built into the weighting coefficient matrices, which are exactly satisfied
without any numerical discretization while in the SBCGE approach, the derivatives in both
the partial differential equation and the boundary conditions are discretized by GDQ with
a high order of accuracy. So, we can see that the numerical errors in the MWCM method
are only contributed by the discretization of the derivatives in the partial differential
equation while the numerical errors in the SBCGE approach are contributed by the dis­
cretization of derivatives in both the partial differential equation and the boundary
conditions. It can be expected that the MWCM approach provides less numerical errors
than the SBCGE approach. However, for the C-C boundary condition, the MWCM results
are partially wrong. In contrast, the SBCGE method works uniformly well for both the
SS-SS and the C-C boundary conditions. As discussed earlier, there are 4 boundary
conditions for beams, and for numerical computation, there are N unknowns lying at the
N grid points. So, to close the system, the discretization of the governing equation should
only be applied at (N -4) interior grid points, leading to a dimension of the resultant
eigenvalue equation system as (N - 4). The SBCGE approach exactly follows this procedure.
In the MWCM method, however, the derivative conditions are built into the weighting
coefficient matrices, and only two Dirichlet conditions need to be implemented. Therefore,
the discretization of the governing equation has to be applied at (N - 2) interior points to
close the system. As a result, the dimension of the resultant MWCM eigenvalue equation
system is (N-2) instead of (N-4). In other words, the MWCM method provides two
more frequencies than the SBCGE approach. For the SS-SS beam, these two additional
frequencies are high frequencies, which do not affect the true natural frequency distribution.
However, for the C-C boundary condition, one of the two additional frequencies is very
small, which causes the computed results to be wrongly distributed. In fact, it can be
observed from Table I that, for the MWCM results of C-C boundary condition, if the first
frequency is removed, the remaining frequencies match the exact solution very well. The
results of the C-SS boundary condition are also shown in Table I. For this case, the
MWCM method provides more accurate results than the SBCGE method since the two
additional frequencies are high frequencies. It seems that if the additional frequencies are
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high frequencies, the MWCM method could provide more accurate results than the SBCGE
method. The accuracy of the SBCGE results can be improved by using more grid points.

For the rectangular plate, the X-coordinates are taken from eqn (40), and the Y­
coordinates are chosen as

l-COS( j-l on)
M-l

Yj = 2 ' j = 1,2, ... , M. (41)

For the free vibration of rectangular plates, there are a variety of publications available.
Among these, the work of Leissa (1973) is most complete in that it presents the frequency
data of all twenty-one plate configurations for the first nine modes and for a wide range of
aspect ratios. Thus, Leissa's results are chosen to evaluate the accuracy of the SBCGE
results. For the rectangular plate, the frequency data are obtained for aspect ratios of
A = alb = 2/5, 2/3, 1,3/2, 5/2, using 12 grid points in both the X and Y directions. Table 2
shows the natural frequencies of the first 5 modes with all four edges simply supported.
The SBCGE, MWCM, and Leissa's results are included in the table. For this case, Leissa's
results are the exact solutions. It can be observed that, by comparing with the exact solution,
the MWCM method provides better accuracy than the SBCGE method. The reason is the
same as for the beam. It is noted that, for the rectangular plate, the dimension of the
resultant MWCM eigenvalue equation system is (N - 2) x (M - 2) while the dimension of
the resultant SBCGE eigenvalue equation system is (N-4) x (M -4). Thus, the MWCM
method provides (2N+2M- 12) more frequencies than the SBCGE method. For the SS­
SS-SS-SS boundary conditions, these additional frequencies are high frequencies, which
do not affect the true natural frequency distribution. However, for the C-C-C-C boundary
conditions, some of these frequencies are low frequencies, which then distort the true
natural frequency distribution of the problem. This can be seen clearly in Table 3. The
MWCM results in Table 3 are completely wrong. As discussed earlier, by using the MWCM
method for the beam, there are two additional frequencies. However, for the rectangular
plate, there are (2N+2M-12) additional frequencies, which depend on the number of grid
points Nand M. Some of these additional frequencies are low frequencies which can result
in the wrong frequency distribution. We can expect that the number of such low frequencies
is also dependent on the number of grid points Nand M. Thus, it is difficult to know
the actual number of such low frequencies which can distort the true natural frequency
distribution. For the case where one pair of two opposite edges are simply supported and

Table 2. Natural frequencies of a rectangular plate (N = M = 12, SS-SS-SS-SS)

Jc = alb 0 1 O2 0 3 n. 0,

2/5 Leissa (1973) 11.4487 16.1862 24.0818 35.1358 41.0576
SBCGE 11.4487 16.1826 24.0529 34.7326 41.0592
MWCM 11.4493 16.1859 24.0818 35.1319 41.0576

2/3 Leissa (1973) 14.2561 27.4156 43.8649 49.3480 57.0244
SBCGE 14.2561 27.4161 43.8665 49.2377 57.0258
MWCM 14.2561 27.4156 43.8649 49.3478 57.0244

Leissa (1973) 19.7392 49.3480 49.3480 78.9568 98.6960
SBCGE 19.7392 49.3495 49.3495 78.9586 98.4154
MWCM 19.7369 49.3480 49.3480 78.9568 98.6956

3/2 Leissa (1973) 32.0762 61.6850 98.6960 11 1.0330 128.3049
SBCGE 32.0762 61.6861 98.6996 110.7848 128.3081
MWCM 32.0762 61.6850 98.6960 11 1.0326 128.3049

5/2 Leissa (1973) 71.5564 101.1634 150.5115 219.5987 256.6097
SBCGE 71.5546 101.1641 150.3305 217.0789 256.6205
MWCM 71.5582 101.1620 150.5110 219.5742 256.6100
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Table 3. Natural frequencies of a rectangular plane (N = M = 12, C--e--e--e)

A= alb 0 1 O, 0 3 O. Os

2/5 Leissa (1973) 23.648 27.817 35.446 46.702 61.554
SBCGE 23.645 27.810 35.414 46.451 62.091
MWCM 0.215 3.579 9.873 19.349 22.390

2/3 Leissa (1973) 27.010 41.716 66.143 66.552 79.850
SBCGE 27.006 41.707 66.130 66.465 79.819
MWCM 0.477 9.945 22.387 27.005 27.350

Leissa (1973) 35.992 73.413 73.413 108.270 131.640
SBCGE 35.986 73.399 73.399 108.230 131.418
MWCM 0.788 22.381 22.381 35.985 61.368

3/2 Leissa (1973) 60.772 93.860 148.820 149.740 179.660
SBCGE 60.763 93.841 148.793 149.547 179.594
MWCM 1.074 22.376 50.370 60.761 61.537

5/2 Leissa (1973) 147.800 173.850 221.540 291.890 384.710
SBCGE 147.779 173.815 221.338 290.321 388.317
MWCM 1.343 22.371 61.706 120.932 139.940

the other pair of two opposite edges are clamped, the MWCM results are also wrong. This
can be seen in Table 4. Compared with the results of the C-e-e-e case, the MWCM results
show some improvement for the Ss-e-SS-e case. This is because some low additional
frequencies of the C-e-e-e case shift to high additional frequencies in the Ss-e-Ss-e
case. If the clamped boundary condition is not imposed at the two opposite edges, then the
MWCM method provides accurate numerical results. This can be observed in Table 5,
which shows the natural frequencies of the first 5 modes for the C-e-SS-SS case. For all
the cases, the SBCGE method is found to work uniformly well. Tables 2-5 demonstrate
that, by using the same number of grid points (N = M = 12), the SBCGE results have the
same order of accuracy for the SS-SS-SS-SS, C-e-e-e, SS-C-SS-e, C-e-SS-SS cases.
The accuracy of these results can be improved by increasing the number of grid points.

5. CONCLUSIONS

In this paper, a new approach is proposed to implement the conventional boundary
conditions in the GDQ free vibration analysis of beams and rectangular plates. In the
proposed approach, the derivative conditions for the two opposite edges i = 1 and i = N

Table 4. Natural frequencies of a rectangular plate (N = M = 12, Ss--e-Ss--e)

A= alb 0 1 O2 0 3 O. Os

2/5 Leissa (1973) 12.135 18.365 27.966 40.750 41.378
SBCGE 12.135 18.366 27.954 40.483 41.385
MWCM 9.872 12.135 18.373 27.968 39.538

2/3 Leissa (1973) 17.373 35.345 45.429 62.054 62.313
SBCGE 17.373 35.346 45.433 61.987 62.321
MWCM 9.870 17.373 35.352 39.494 45.429

Leissa (1973) 28.951 54.743 69.327 94.585 102.216
SBCGE 28.951 54.745 69.329 94.589 101.950
MWCM 9.870 28.951 39.482 54.743 69.344

3/2 Leissa (1973) 56.348 78.984 123.172 146.268 170.111
SBCGE 56.348 78.984 122.950 146.273 170.117
MWCM 9.870 39.479 56.348 78.984 88.833

5/2 Leissa (1973) 145.484 164.739 202.227 261.105 342.144
SBCGE 145.484 164.739 202.093 260.890 340.485
MWCM 9.870 39.478 88.827 145.484 157.894
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Table 5. Natural frequencies of a rectangular plate (N = M = 12, C-C-SS-SS)

A. = alb a, O2 0 3 n. a,

2/5 Leissa (1973) 16.849 21.363 29.236 40.509 51.457
SBCGE 16.848 21.357 29.201 40.207 51.454
MWCM 16.847 21.357 29.225 40.515 51.449

2/3 Leissa (1973) 19.952 34.024 54.370 57.517 67.815
SBCGE 19.952 34.020 54.366 57.376 67.790
MWCM 19.951 34.020 54.363 57.510 67.788

Leissa (1973) 27.056 60.544 60.791 92.865 114.570
SBCGE 27.054 60.540 60.788 92.834 114.202
MWCM 27.054 60.538 60.786 92.835 114.563

3/2 Leissa (1973) 44.893 76.554 122.330 129.410 152.580
SBCGE 44.891 76.545 122.324 129.096 152.527
MWCM 44.890 76.544 122.317 129.398 152.522

5/2 Leissa (1973) 105.310 133.520 182.730 253.180 321.600
SBCGE 105.200 133.484 182.505 253.295 321.587
MWCM 105.296 133.480 182.657 253.222 321.556

are coupled to provide two solutions at two neighboring points to the edge i = 2 and
i = N - 1, which are expressed in terms of the function values at interior points
i = 3, 4, ... , N - 2 (see Fig. 1). These solutions are then substituted into the governing
equations. The present approach overcomes the drawbacks of the previous b-technique in
implementing the derivative conditions. The b-technique discretizes the derivative boundary
conditions at a point of distance b away from the boundary while the present approach
discretizes the derivative boundary condition exactly at the boundary point itself. Compared
with the method of modifying weighting coefficient matrices (MWCM), the dimension of
the resultant eigenvalue equation system in the present approach is reduced by 2 for the
beam, and (2N+2M-12) for the rectangular plate. The present approach was compared
with the MWCM method through their applications to the beam and the rectangular plate
with simply supported and clamped boundary conditions. It was found that, for simply
supported boundary conditions, the MWCM method gives more accurate numerical results.
However, for the case where the opposite edges are clamped-damped, the MWCM results
are incorrect. The present approach works uniformly well for any combination of simply
supported and clamped boundary conditions.
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